See the schedule in the official ISMB page here.


Keynote Speakers

Susannah G. Tringe 

Talk title: Sequence-based interrogation of soil microbiomes and their ecosystem benefits

Susannah G. Tringe, Lawrence Berkeley National Laboratory, Berkeley, California, United States

Plants roots and the soil they grow in are heavily colonized with microbes that play critical roles in nutrient cycling and transport as well as influencing plant growth and health. Molecular methods including DNA sequencing have begun to elucidate the forces governing the assembly and maintenance of plant and soil microbial communities, offering the opportunity for these microbial communities to be nurtured and manipulated to promote plant growth and health as well as soil health and ecosystem functions.

We have combined omics methods, biogeochemical assays, and gas flux measurements to investigate the factors influencing greenhouse gas emissions from natural and managed wetland systems. By integrating these datasets we find that gas fluxes represent a complex interplay of biological, chemical, and physical factors that vary across habitats. Our results suggest considerable heterogeneity in fluxes even in physically proximate locations that have implications for the success of wetland preservation and restoration as a carbon storage strategy, particularly in the context of sea level rise.

In agricultural systems, we find that different plant compartments (e.g. rhizosphere and root endosphere) harbor unique and dynamic microbial communities heavily influenced by the soil, surrounding environment and host genotype. Abiotic stress, such as drought and low nitrogen, can alter both the composition of these communities and their interactions with each other and the plant. Our sequence-based characterizations of plant-associated communities, leveraging a variety of bioinformatic tools, have identified key populations that structure the community and respond dynamically to environmental changes, representing potential targets for improvement of plant resilience.

 

Talk title:Towards fully genome-resolved metagenomics

Christopher Quince, Earlham Institute, Norwich, United Kingdom